Note

ON THE Z-COUNTING POLYNOMIAL FOR EDGE-WEIGHTED GRAPHS*

Sonja NIKOLIĆ, Dejan PLAVŠIĆ and Nenad TRINAJSTIĆ
The Rugjer Bošković Institute, P.O. Box 1016, 71001 Zagreb, The Republic of Croatia

Received 20 November 1991; revised 6 January 1992

Abstract

The construction of the Z-counting polynomial for edge-weighted graphs is discussed.

The Z-counting polynomial $Q(G ; x)$ of a graph G was introduced two decades ago by Hosoya [1]. It is defined as

$$
\begin{equation*}
Q(G ; x)=\sum_{k=0}^{[N / 2]} p(G ; k) x^{k}, \tag{1}
\end{equation*}
$$

where the coefficient $p(G ; k)$ represents the number of ways in which k non-adjacent edges can be chosen from G. Note that $p(G ; 0)=1$ by definition, $p(G ; 1)=$ the number of edges in G and $p(G ; N / 2)=$ the number of 1 -factors in G.

The Z-counting polynomial has a number of interesting properties [2-4]. For example, the Z-counting polynomial is closely related to the acyclic (reference, matching) polynomial $P^{\text {ac }}(G ; x)$ of G

$$
\begin{equation*}
P^{\mathrm{ac}}(G ; x)=\sum_{k=0}^{[N / 2]}(-1)^{k} p(G ; k) x^{N-2 k} \tag{2}
\end{equation*}
$$

which is the fundamental quantity in the topological resonance energy concept [2,5]. The acyclic polynomial has also found other uses [4,6-9]. The relationship between the Z-counting polynomial and the acyclic polynomial is given by

$$
\begin{equation*}
Q(G ; x)=(-1)^{k} x^{N} P^{\mathrm{ac}}\left(G ; x=x^{-1}\right) \tag{3}
\end{equation*}
$$

[^0]The major use of the Z-counting polynomial is for computing the Z-index $Z(G)$ of $G[1]$ (hence the name):

$$
\begin{equation*}
Z(G)=\sum_{k=0}^{[N / 2]} p(G ; k)=Q(G ; x=1) \tag{4}
\end{equation*}
$$

In fig. 1, we give as an example the "pedestrian" construction of the Z counting polynomial for a graph G representing the carbon skeleton of vinylcyclobutadiene.

$$
\begin{aligned}
& p(G ; 0)=1 \\
& p(G ; 1)=6
\end{aligned}
$$

G

$$
\mathrm{Q}(\mathrm{G} ; \mathrm{x})=1+6 \mathrm{x}+8 \mathrm{x}^{2}+2 \mathrm{x}^{3}
$$

Fig. 1. The construction of the Z-counting polynomial for a graph G depicting the carbon skeleton of vinylcyclobutadiene.

The corresponding acyclic polynomial is also immediately known:

$$
\begin{equation*}
P^{\mathrm{ac}}(G ; x)=x^{6}-6 x^{4}+9 x^{2}-2 . \tag{5}
\end{equation*}
$$

The contributions to each $p(G ; k)$ may be regarded as acyclic Sachs graphs [2,5,10] which are made up of only K_{2} components [11].

The construction of the Z-counting polynomial via acyclic Sachs graphs is of great conceptual value, but computationally rather involved. For large graphs, the Z-counting polynomial cannot be constructed even by means of the computer. A much easier and faster way to compute the Z-counting polynomial is by the following recurrence relation:

$$
\begin{equation*}
Q(G ; x)=Q(G-e ; x)+x Q(G-(e) ; x) \tag{6}
\end{equation*}
$$

which is the same type of expression as the one which is used for computing the acyclic polynomial. $G-e$ and $G-(e)$ in (6) represent subgraphs of G which are obtained by removing, respectively, an edge, and an edge and its incident vertices from G. The idea behind (6) is to reduce the graph G to smaller fragments for which the Z-counting polynomials are known [1,3]. In fig. 2, we give the construction of the Z-counting polynomial for the same graph G as in fig. 1 , using the recurrence relation (6).

Fig. 2. The construction of the Z-counting polynomial for a graph G, already given in fig. 1 , using the recurrence relation (6).

In this note, we report the extension of the Z-counting polynomial to edgeweighted graphs. The edge-weighted graphs are of interest in various fields of science such as communication net theory [12] and chemical graph theory [2,13].

These graphs will be denoted by G^{*} and the edge-weights by w. In fig. 3 is given an examples of the edge-weighted graph.

Fig. 3. An edge-weighted graph G^{*}.
The construction of the Z-counting polynomial for edge-weighted graphs is based on a similar procedure that we developed for computing the acyclic polynomials of weighted graphs $[2,5,10,13]$. In this case, we had to introduce the concept of the weighted Sachs graph. For example, if we wish to compute the Z-counting polynomial for a weighted graph G^{*}, given in fig. 3, the following sets of Sachs graphs arise:
(i)

Subgraphs labeled by 4-8 are ordinary unweighted acyclic Sachs graphs, while 1-3 are weighted acyclic Sachs graphs. Their contribution to the coefficient $p\left(G^{*} ; 2\right)$ is $5+3 w$.
(ii)

Subgraph labeled $\mathbf{1}$ is the weighted Sachs graph and subgraph 2 is the unweighted Sachs graph. Their contribution to the coefficient $p(G ; 3)$ is $1+w$. The Z-counting polynomial of G^{*} is then given by

$$
\begin{equation*}
Q\left(G^{*} ; x\right)=1+(5+w) x+(5+3 w) x^{2}+(1+w) x^{3} \tag{7}
\end{equation*}
$$

For $w=1$, this polynomial reduces to the Z-counting polynomial of G depicting vinylcyclobutadiene (see fig. 1). If the weight $w=0.75$ is chosen for the weighted edge in G^{*}, the the Z-counting polynomial from the above is given as

$$
\begin{equation*}
Q\left(G^{*} ; x\right)=1+5.75 x+7.25 x^{2}+1.75 x^{3} \tag{8}
\end{equation*}
$$

The Z-counting polynomial $Q\left(G^{*} ; x\right)$ for an edge-weighted graph G^{*} can also be computed using recurrence relation (6), but in a modified form:

$$
\begin{equation*}
Q\left(G^{*} ; x\right)=Q\left(G^{*}-e_{w} ; x\right)+w x\left(G^{*}-\left(e_{w}\right) ; x\right) \tag{9}
\end{equation*}
$$

where $G^{*}-e_{w}$ and $G^{*}-\left(e_{w}\right)$ are subgraphs obtained by removing from G^{*} the weighted edge e_{w}, and the weighted edge e_{w} and its incident edges, respectively. An example of using recurrence formula (9) is given in fig. 4. If there are more weighted edges

Fig. 4. The construction of the Z -counting polynomial for an edge-weighted graph G^{*} using the recurrence relation (9).

$$
\begin{aligned}
& Q\left(G^{*} ; x\right)=Q\left(G^{*}-e_{w_{1}}\right)+w_{1} x Q\left(G^{*}-\left(e_{w_{1}}\right)\right) \\
& =Q\left(G^{*}-e_{w_{2}}\right)+w_{2} \times Q\left(G^{*}-\left(e_{w_{2}}\right)\right) \\
& +w_{1} \times Q\left(G^{*}-\left(e_{w_{1}}\right)\right) \\
& Q\left(G^{*} \cdot e_{W_{2}} ; x\right)=1+4 x+2 x^{2} \\
& w_{2} \mathrm{xQ}\left(\mathrm{G}^{*}-\left(\mathrm{e}_{w_{2}}\right) ; \mathrm{x}\right)=\mathrm{w}_{2} \mathrm{x}\left(1+3 \mathrm{x}+\mathrm{x}^{2}\right) \\
& =w_{2} x+3 w_{2} x^{2}+w_{2} x^{3} \\
& w_{1} Q\left(G^{*}-\left(c_{w_{1}}\right) ; x\right)=w_{1} x\left(1+3 x+x^{2}\right) \\
& =w_{1} x+3 w_{1} x^{2}+w_{1} x^{3} \\
& Q\left(\mathrm{G}^{*} ; \mathrm{x}\right)=1+\left(4+\mathrm{w}_{1}+\mathrm{w}_{2}\right) \mathrm{x}+\left(2+3 \mathrm{w}_{1}\right. \\
& \left.+3 w_{2}\right) x^{2}+\left(w_{1}+w_{2}\right) x^{3}
\end{aligned}
$$

Fig. 5. A graph G^{*} with two weighted edges and the construction of its Z-counting polynomial.
in G^{*}, then the recursion (9) must be used in several steps, the number of steps being determined by the number of weighted edges. An example of a two-edge weighted graph G^{*} and the computation of its Z-counting polynomial is given in fig. 5.

For $w_{1}=w_{2}$, the Z-counting polynomial given in fig. 5 reduces to

$$
\begin{equation*}
Q\left(G^{*} ; x\right)=1+(4+2 w) x+(2+6 w) x^{2}+2 w x^{3} \tag{10}
\end{equation*}
$$

The same polynomial for $w_{2}=1$ converts into the Z-counting polynomial in fig. 4 .

Acknowledgement

This work was supported by the Ministry of Science, Technology and Informatics of the Republic of Croatia via Grants No. 1-07-159 and No. 1-07-165.

References

[1] H. Hosoya, Bull. Chem. Soc. Japan 44(1971)2331.
[2] N. Trinajstíc, Chemical Graph Theory, Vol. 2 (CRC, Boca Raton, FL, 1983), p. 112.
[3] H. Hosoya, in: Mathematics and Computational Concepts in Chemistry, ed. N. Trinajstić (Horwood, Chichester, 1986), p. 110.
[4] I. Gutman, in: Chemical Graph Theory: Introduction and Fundamentals, ed. D. Bonchev and R.H. Rouvray (Abacus Press/Gordon and Breach, New York, 1991), p. 133.
[5] I. Gutman, M. Milun and N. Trinajstić, J. Amer. Chem. Soc. 99(1977)1692.
[6] O.J. Heilmann and E.H. Lieb, Phys. Rev. Lett. 24(1970)1412; Commun. Math. Phys. 22(1971)133.
[7] H. Kunz, Phys. Lett. A32(1970)311.
[8] E.J. Farrell, J. Comb. Theory B27(1979)75.
[9] C.D. Godsil and I. Gutman, J. Graph Theory 5(1981)137.
[10] N. Trinajstiĉ, Croat. Chem. Acta 49(1977)593.
[11] A. Graovac, I. Gutman, N. Trinajstić and T. Živković, Theor. Chim. Acta 26(1972)67.
[12] W. Meyeda, Graph Theory (Wiley-Interscience, New York, 1972), ch. 12.
[13] N. Trinajstić, Chemical Graph Theory, 2nd rev. ed. (CRC, Boca Raton, FL, 1992), ch. 10.

[^0]: * Dedicated to Professor Haruo Hosoya (Tokyo) on the occasion of his 55th birthday for enriching chemical graph theory with the elegant concept of the Z-counting polynomial.

